Legal Disclaimer

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL
DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL® PRODUCTS INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING,
OR LIFE SUSTAINING APPLICATIONS.

• Intel may make changes to specifications and product descriptions at any time, without notice.

• All products, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice.

• Intel, processors, chipsets, and desktop boards may contain design defects or errors known as errata, which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

• Penryn, Nehalem, Westmere, Sandy Bridge, and other code names featured are used internally within Intel to identify products that are in
development and not yet publicly announced for release. Customers, licensees and other third parties are not authorized by Intel to use code names
in advertising, promotion or marketing of any product or services and any such use of Intel's internal code names is at the sole risk of the user

• Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel
products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance.

• Intel, Xeon, Netburst, Core, VTune, and the Intel logo are trademarks of Intel Corporation in the United States and other countries.

*Other names and brands may be claimed as the property of others.
A long term commitment to the HPC market segment
Tick-Tock Development Cycles
Integrate. Innovate.

45nm
Penryn

Intel® Core™
Microarchitecture

TICK

32nm
Nehalem
Westmere
Sandy Bridge

SSE4.1

SSE4.2

AESNI

AVX

22nm
Ivy Bridge
Future Proc.

Forecast

Future Instructions
Increasing Performance and Energy Efficiency

Process Technology
22NM

Legacy
TURBO-BOOST

Core Architecture
AVX

Potential future options, subject to change without notice.
Two Socket Platform Evolution

- **Frontsidebus**
 - MCH (Memory)
 - ICH (I/O)

- **Multiple Frontsidebuses**
 - MCH (Memory)
 - ICH (I/O)

- **Nehalem Architecture**
 - Integrated Memory Controller, QPI

- **Sandy Bridge Architecture**
 - Integrated Memory Controller, QPI, Integrated I/O

Schematic overview, potential future options, subject to change without notice.
Intel and Parallelism

Knights Ferry builds on established CPU architecture and programming concepts - providing the benefits of code re-use to developers of highly parallel applications.

<table>
<thead>
<tr>
<th></th>
<th>Nocona</th>
<th>Woodcrest</th>
<th>Nehalem-EP</th>
<th>Westmere-EP</th>
<th>Sandy Bridge</th>
<th>Aubrey Isle (Knights Ferry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>3.6GHz</td>
<td>3.0GHz</td>
<td>3.2GHz</td>
<td>3.33GHz</td>
<td>TBD</td>
<td>1.2GHz</td>
</tr>
<tr>
<td>Core(s)</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>Thread(s)</td>
<td>2</td>
<td>2</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>128</td>
</tr>
<tr>
<td>SIMD Width</td>
<td>128 (2 clock)</td>
<td>128 (1 clock)</td>
<td>128 (1 clock)</td>
<td>128 (1 clock)</td>
<td>256 (1 clock)</td>
<td>512 (1 clock)</td>
</tr>
</tbody>
</table>

Images not intended to reflect actual die sizes
How to get High Performance and Energy Efficiency?

The Newest Addition to the Intel Server Family.
Industry’s First General Purpose Many Core Architecture.
Intel® MIC Customer Value

Combine:

The many benefits of broad Intel CPU programming models, techniques, and familiar developer tools

+

The compute density and energy efficiency associated with specialty accelerators for parallel workloads

=

Intel® Many Integrated Core products

MIC = CO-PROCESSOR for highly-parallel workloads FULLY PROGRAMMABLE
Intel® MIC Architecture – Knights Family

Multiple IA cores
- In-order, short pipeline
- Multi-thread support

16-wide vector units (512b)
- Extended instruction set
 Fully coherent caches

1024-bit ring bus
GDDR5 memory
- Supports virtual memory

Standard IA Shared Memory Programming

For illustration only.
Future options subject to change without notice.
Aubrey Isle Core (in KNF)

The Aubrey Isle co-processor core:
- Scalar pipeline derived from the dual-issue Pentium processor
- Short execution pipeline
- Fully coherent cache structure
- Significant modern enhancements such as multi-threading, 64-bit extensions, and sophisticated pre-fetching.
- 4 execution threads per core
- Separate register sets per thread
- Supports IEEE standards for floating point arithmetic
- Fast access to its 256KB local subset of a coherent L2 cache.
- 32KB instruction cache per core
- 32KB data cache for each core.

Enhanced x86 instructions set with:
- Over 100 new instructions,
- Wide vector processing operations
- Some specialized scalar instructions
- 3-operand, 16-wide vector processing unit (VPU)
- VPU executes integer, single-precision float, and double precision float instructions

Interprocessor Network
1024 bits wide, bi-directional (512 bits in each direction)
New VPU Instructions

>100 new Instructions

512-bit SIMD
- 32x 512b vector-register, 8x 16b mask-register
- 16 FLOAT32, 8 FLOAT64, 16 INT32 or 512 LOGICAL1 elements /vreg

Ternary, Multiply-Add (FMA)
- More flops in fewer ops (IEEE conform)
 e.g. \texttt{vmadd231ps v0, v5, v6 ; v0 = v5 * v6 + v0}

Load-op
- Third operand can be taken direct from memory

Broadcast/Swizzle/Format Conversion (on Load/Store)
- Float16, unorm8, etc. - allows more efficient use of caches

Predication/Masking on most Operations

Gather/Scatter support
The “Knights” Family

Knights Corner

1st Intel® MIC product
22nm process
>50 Intel Architecture Cores
Within PCIe Power Envelope
Additional Enhancements

Knights Ferry
Software Development Platform

Future Knights Products

Future options subject to change without notice.
“Knights Ferry” Development Platform

Software Development Platform

Growing availability through 2011
- Up to 32 cores, up to 1.2 GHz
- Up to 128 threads at 4 threads / core
- Up to 8MB shared coherent cache
- TFLOPS Performance
- Up to 2 GB GDDR5 shared memory
- PCIe Card (within 300W envelope)
- Bundled with Intel HPC SW tools

Software development platform for Intel® MIC architecture

Copyright © 2010 Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners
Intel® MIC Architecture Programming

Single Source Code

Programming Models

Compilers, Libraries, Runtimes

Intel® Xeon® processor family

Intel® MIC architecture co-processor

Common with Intel® Xeon®

- Programming Models
- C/C++, Fortran compilers
- Intel SW developer tools and libraries (MKL, IPP, TBB, ArBB, …)
- Coding and optimization techniques and SW tools
- Ecosystem support

Eliminates Need for Dual Programming Architecture

For illustration only, potential future options subject to change without notice.
Example: Computing PI

```c
#include <math.h>
#include <stdlib.h>

#define NSET 1000000

int main(int argc, const char** argv) {
    long int i;
    float num_inside, Pi;
    num_inside = 0.0f;

    #pragma offload target (MIC)
    #pragma omp parallel for reduction(+:num_inside)
    for(i = 0; i < NSET; i++) {
        float x, y, distance_from_zero;
        // Generate x, y random numbers in [0,1)
        x = float(rand()) / float(RAND_MAX + 1);
        y = float(rand()) / float(RAND_MAX + 1);
        distance_from_zero = sqrt(x*x + y*y);
        if (distance_from_zero <= 1.0f)
            num_inside += 1.0f;
    }
    Pi = 4.0f * (num_inside / NSET);
    printf("Value of Pi = %f \n", Pi);
}
```

One additional line from the CPU version (For illustration only)
Heterogeneous Programming with MIC

- MPI (C/C++, FTN)
- MKL, IPP (C/C++, FTN)
- Cilk (C++)
- CnC (C++)
- TBB (C++)
- ArBB (C++)
- CAF (FTN)
- OpenMP (C/C+/FTN)
- Fortran90 Arrays (FTN)
- CEAN (C++)
- OpenCL (C/C++)
- Intel Compilers (C/C++, FTN)

Larger #Cores
Wider Vectors/SIMD

Intel Software

Programming Intel® MIC is the same as programming a CPU

Future options subject to change without notice.
Intel Development Tools for HPC
Leading developer tools for performance on nodes and clusters

Advanced Performance
C++ and Fortran Compilers, MKL/IPP Libraries & Analysis Tools for Windows*, Linux* developers on IA based multi-core node

Distributed Performance
MPI Cluster Tools, with C++ and Fortran Compiler and MKL Libraries, and analysis tools for Windows*, Linux* developers on IA based clusters
Scaling Performance Forward
Software Tools Vision

Employ versatile and common development tools across all IA architectures

Single Portable Software Stack

Flexible Programmability

Scalable Performance

Data-Parallelism
Thread-Parallelism
Messaging

Potential future options, no indication of actual product or development, subject to change without notice.
Active Projects

Designing New Capabilities

- Intel® OpenCL SDK Now!
- Intel Advisor Lite Now Part of Intel® Parallel Studio
- Intel® Web APIs New!
- Intel® Energy Checker SDK
- Intel® SOA Expressway XSLT 2.0 Processor
- Smoke - Game Technology Demo Rev 1.2 Released
- Isolated Execution
- Intel® Direct Ethernet Transport
- Intel® Software Development Emulator

Creating Concurrent Code

- Intel® Cilk++ Software Development Kit
- Intel® Concurrent Collections for C++ Rev 0.6 Released
- Intel® C/C++ STM Compiler, Prototype Edition Rev 4.0 Released

Math Libraries

- Intel® Cluster Poisson Solver Library
- Intel® Adaptive Spike-Based Solver
- Intel® Ordinary Differential Equations Solver Library

Performance Tuning

- Intel® Software Tuning Agent
- Intel® Architecture Code Analyzer
- Intel® Performance Tuning Utility 4.0 Update 3 Released
- Intel® Platform Modeling with Machine Learning
Intel TeraScale Research Areas

MANY-CORE COMPUTING

Teraflops of computing power

3D STACKED MEMORY

Terabytes of memory bandwidth

SILICON PHOTONICS

Terabits of I/O throughput

Future vision, does not represent real products.
Moore’s Law: Alive and Well at Intel

Continuing Moore’s Law each new process technology allows up to:

- Transistor Performance
 +20%

- Switching Power
 -30%

Potential future options, no indication of actual product or development, subject to change without notice.
Industry Trend to Multi/Many-Core

Energy Efficient (HPC) Computing with Multi/Many-Core Processors

- Multi Processor
- Hyper-Threading
- Dual-Core
- Multi-Core (4+)
- Many-Core

But: not all cores all equal!
Intelligent Processor Performance Scaling Forward

Processor Core Performance

- Intel® Xeon® 5000 Series
- Intel® Xeon® 5200 Series
- Intel® Xeon® 5400 Series
- Intel® Xeon® 5500 Series
- Intel® Xeon® 5600 Series

"Sandy Bridge"

Potential future options, subject to change without notice.

Faster Time To Productivity

Total Application Performance

Increased Single Thread Performance

Increased Floating Point Performance and Bandwidth

Irregular Data-Access

Balanced Processor and System Architecture

Less Complex Software Development and Support

Source: Intel

Copyright © 2010 Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners
Intelligent and energy efficient performance on demand

The number of Turbo bins shown is only for illustrative purposes and is not representative of the actual number of turbo bins available.