Generating and Automatically Tuning OpenCL Code for Sparse Linear Algebra

Dominik Grewe Anton Lokhmotov

Media Processing Division
ARM

School of Informatics
University of Edinburgh

December 13, 2010
Introduction

• Sparse matrices are matrices where the majority of elements are zero

• Sparse linear algebra used in many applications
 • Iterative solvers of linear systems
 • Eigenvalue problems

• Many different formats have been proposed
 • For specific types of matrices (e.g. diagonal matrices)
 • For specific architectures (e.g. GPUs)

• Not obvious which format is best suited for particular architecture
 • Scalar vs. vector architectures
 • Not feasible to implement each format for all architectures
Proposal

We have developed a framework consisting of:

1. A high-level representation for describing sparse matrix formats
 - Independent of architecture and thus portable
 - Compiler is responsible for system-specific optimizations
Proposal

We have developed a framework consisting of:

1. A high-level representation for describing sparse matrix formats
 - Independent of architecture and thus portable
 - Compiler is responsible for system-specific optimizations

2. A compiler generates efficient low-level code from the high-level representation
 - Sparse Matrix-Vector Multiplication (SpMV)
 - Targetting GPUs (OpenCL and CUDA back-end)
Proposal

We have developed a framework consisting of:

1. A high-level representation for describing sparse matrix formats
 - Independent of architecture and thus portable
 - Compiler is responsible for system-specific optimizations

2. A compiler generates efficient low-level code from the high-level representation
 - Sparse Matrix-Vector Multiplication (SpMV)
 - Targeting GPUs (OpenCL and CUDA back-end)

3. Automatic tuning to further improve performance
 - Explore configuration space
Coordinate (COO) format

- Each non-zero element and its coordinates are stored explicitly
- Elements can be stored in random order
- No structure and therefore often unsuitable for computation
parameter description
parameters:
 num_rows
 num_cols
 num_nonzeros

data storage description
data:
 values [num_nonzeros] : DATA_TYPE
 colIdx [num_nonzeros] : INDEX_TYPE
 rowIdx [num_nonzeros] : INDEX_TYPE
access description
access:
 for i in [0 : num_nonzeros-1]
 {
 _col = colIdx[i]
 _row = rowIdx[i]

 _val = values[i]
 }
ELLPACK/ITPACK (ELL) format

- All rows are stored with fixed width
- Row coordinate implicit in position of elements in arrays
- Elements from adjacent rows are stored in adjacent memory cells
ELLPACK/ITPACK (ELL) format

values colIdx

values
colIdx

Dominik Grewe, Anton Lokhmotov

www.inf.ed.ac.uk
Representation of ELL Format

parameter description
parameters:
 num_rows
 num_cols
 width # elements per row

data storage description
data:
 values [width * num_rows] : DATA_TYPE
 colIdx [width * num_rows] : INDEX_TYPE
Representation of ELL Format

```python
# access description
access:
    for _row in [ 0 : num_rows-1 ]
    {
        for i in [ 0 : width-1 ]
        {
            _col = colIdx[i*num_rows + _row]
            _val = values[i*num_rows + _row]
        }
    }
```
Hybrid (HYB) format by Bell and Garland (NVIDIA)

- Majority of matrix stored in ELL, remaining elements in COO
- Reduces number of explicitly stored zeros
- Useful when there are a few rows with many non-zero elements
Representation of HYB Format

parameter description
parameters:
 num_rows
 num_cols
 ell_width
 coo_nonzeros

data storage description
data:
 ell_values [ell_width * num_rows] : DATA_TYPE
 ell_colIdx [ell_width * num_rows] : INDEX_TYPE
 coo_values [coo_nonzeros] : DATA_TYPE
 coo_rowIdx [coo_nonzeros] : INDEX_TYPE
 coo_colIdx [coo_nonzeros] : INDEX_TYPE
Representation of HYB Format

access:

for _row in [0 : num_rows-1]
{
 for i in [0 : ell_width-1]
 {
 _col = colIdx[i*num_rows + _row]
 _val = values[i*num_rows + _row]
 }
}

for i in [0 : coo_nonzero-1]
{
 _col = colIdx[i]
 _row = rowIdx[i]
 _val = values[i]
}
SpMV Code Generation

- Compute dot-product of each matrix row with input vector
- Requires reduction in each row
Compilation Strategies

Formats with efficient row access:

- **Single** work-item per row ("1IPR")
 - Requires no synchronization

- **Multiple** work-items per row ("nIPR")
 - Synchronization across work-items required
Compilation Strategies

Formats with efficient row access:

- *Single* work-item per row (“1IPR”)
 - Requires no synchronization
- *Multiple* work-items per row (“nIPR”)
 - Synchronization across work-items required

Formats without efficient row access:

- Single work-item for entire matrix (“SEQ”)
 - No synchronization, but very slow
- Single work-item per element (“ATOMIC”)
 - Use atomic functions to synchronize work-items assigned to same row
Exploiting data reuse

- Storing the input vector as an image
 - Input vector is reused across rows
 - Accesses are essentially random
 - Use caching of texture memory
Exploiting data reuse

- Storing the input vector as an image
 - Input vector is reused across rows
 - Accesses are essentially random
 - Use caching of texture memory

- Eliminating loads from the input vector
 - Check if matrix element is 0 before loading vector element
 - Reuse vector value for columns in blocked formats
Exploiting data reuse

- Storing the input vector as an image
 - Input vector is reused across rows
 - Accesses are essentially random
 - Use caching of texture memory

- Eliminating loads from the input vector
 - Check if matrix element is 0 before loading vector element
 - Reuse vector value for columns in blocked formats

- Caching matrix data
 - Introduce __reuse keyword for user to specify arrays that get reused
 - Store arrays that get reused as images to benefit from texture caches
Further Optimizations

- Optimizing the reduction phase
 - Parallel reduction
 - Avoid memory bank conflicts
 - No synchronization within “warps”
Further Optimizations

• Optimizing the reduction phase
 • Parallel reduction
 • Avoid memory bank conflicts
 • No synchronization within “warps”

• Loop unrolling
 • Unrolling small loop nests can improve performance
 • E.g. blocked formats
 • Currently always unrolls loop if iteration space is static, but can be made optional
Evaluation Methodology

- six state-of-the-art matrix formats
 - CSR, DIA, ELL and HYB from Bell and Garland [1] (SC 2009)
 - Blocked ELLPACK (BELL) from Choi et al. [2] (PPoPP 2010)
 - Sliced ELLPACK (SELL) from Monakov et al. [3] (HiPEAC 2010)

- 14 matrices taken from [1]

Experiments

- Generated vs hand-written code
- Generated scalar vs vector code

Experimental Setup

- NVIDIA Tesla S1070 w/ CUDA SDK 3.0/2.3
- ATI Radeon HD 5970 w/ Stream SDK v2.1
Results: Diagonal

![Graph showing performance comparison between hand-written, generated (fixed), and generated (tuned) methods for Dense and FEM/Cantilever models. The x-axis represents the type of model, and the y-axis represents GFLOP/s.]
Results: Compressed Sparse Row

CSR

Dense Protein FEM/Spheres FEM/Cantilever Wind Tunnel FEM/Ship QCD FEM/Ship Economics Epidemiology FEM/Ship LP

hand-written generated (fixed) generated (tuned)
Results: ELLPACK/ITPACK

ELL

hand-written generated (fixed) generated (tuned)

GFLOP/s

Dense Protein FEM/Spheres FEM/Cantilever Wind Tunnel FEM/Harbor QCD FEM/Ship Economics Epidemiology FEM/Accelerator Circuit Webbase LP

Dominik Grewe, Anton Lokhmotov www.inf.ed.ac.uk
Results: Hybrid

The chart shows the performance of HYB systems across various domains, such as Dense, Protein, FEM/Spheres, FEM/Cantilever, Wind Tunnel, FEM/Ship, QCD, Economics, Epidemiology, FEM/Accelerator, Circuit, Webbase, and LP. The x-axis represents the different domains, and the y-axis represents the GFLOP/s performance. The bars are color-coded to indicate different types of generated models: hand-written, generated (fixed), and generated (tuned).
Results: Blocked ELLPACK

![Graph showing performance comparison of different models](image-url)
Results: sliced ELLPACK

![Graph showing performance comparison between different fields and their respective benchmarks (Dense, Protein, FEM/Spheres, FEM/Cantilever, Wind Tunnel, FEM/Ship, QCD, Economics, FEM/Ship, FEM/Ship, LP) with categories: hand-written, generated (fixed), generated (tuned).]
Results: Scalar vs Vector

CSR

GFLOP/s

Scalar (generated, tuned)

Vector (generated, tuned)

Dense Protein FEM/Spheres FEM/Cantilever Wind Tunnel FEM/Ship QCD Economics Epidemiology FEM/Accelerator Circuit Webbase LP
Summary

• A new high-level language for sparse matrix formats

• Compiler generating efficient SpMV code for GPUs from format description
 • Comparable performance to hand-written code

• Automatic tuning to find optimal configuration
 • Improves performance even further
Summary

• A new high-level language for sparse matrix formats
• Compiler generating efficient SpMV code for GPUs from format description
 • Comparable performance to hand-written code
• Automatic tuning to find optimal configuration
 • Improves performance even further

Future Work:

• Predict optimal format and configuration for matrix and architecture using machine learning
References

Example: Compressed Sparse Row (CSR) format

- Elements and their column index from same row are stored in contiguous chunks memory.
- Rows are identified by storing the indices of each row’s first element.
- Allows efficient access to individual rows.
Representation of CSR Format

parameter description
parameters:
 num_rows
 num_cols
 num_nonzeros

data storage description
data:
 values [num_nonzeros] : DATA_TYPE
 colIdx [num_nonzeros] : INDEX_TYPE
 rowPtr [num_rows + 1] : INDEX_TYPE
access description
access:
 for _row in [0 : num_rows−1]
 {
 s = rowPtr[_row]
 e = rowPtr[_row + 1]
 for i in [s : e−1]
 {
 _col = colIdx[i]
 _val = values[i]
 }
 }
Sliced ELLPACK (SELL) by Monakov et al.

- Divide matrix into slices and store each slice in ELL separately.
- Re-order rows to bring together rows of similar length.
- Fixed-height slices vs variable-height slices.
- Reduces number of explicitly stored zeros.
- Store elements in small blocks.
- Divide matrix into slices and store each slice separately in blocked version of ELL.
- Re-order rows to bring together rows of similar length.
- Particularly suitable for matrices where non-zero elements occur in small blocks.